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Motion-contrast computation without directionally selective motion sensors
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The detection of relative motion, i.e., motion contrast, has been reported for motion-sensitive neurons in
several vertebrate systems, yet the mechanism underlying motion-contrast sensitivity remains unknown. An
algorithm for computing motion contrast directly from the moving intensity distribution is proposed. In this
algorithm, the time-dependent intensity distribution of the visual space is convolved with a periodic function.
For coherent motion, the resulting convolution integral reduces to a traveling wave of fixed amplitude, while
incoherent motion causes the amplitude to oscillate. The frequency of the amplitude oscillation provides a
measure of motion contrast. The algorithm is successful in reproducing tuning curves derived from measure-
ments of motion-contrast sensitivity in avian tectum and primate middle temporal area.
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[. INTRODUCTION tum and middle temporal area of the monkayea MT). In

To function successfully in its environment, an animal S€C- V we discuss the model against the background of ex-
requires the ability to distinguish a salient moving objectiSting models of motion-contrast sensitivity and experimental
from its background in the visual scene. In particular, it mustdata. We further suggest an implementation of the model in
be able to eliminate irrelevant whole field motion due toterms of a neural network that might be realized biologically.
body, head, and eye movements. Self-evidently, motion-
contrast detection, and its analog extension to motion-
contrast estimation, are computational tasks of fundamental

importance to visual processing in vertebrates. . Our model employs a basic filtering process to sense con-
A large body of experimental evidence has establishegrasting motion in visual scenes and to determine the relative

that visual processing of local image features is shaped byg|ocity of moving objects. The time-dependent, one-

the context within which local features are preserjted3). dimensional visual inpuit(x,t) along thex dimension is con-

Contextual influences on visual processing extend to highetzqyed with a cosine function, leading to a transformed in-
order image properties, such as image mofib], which tensity distribution

plays an essential role in the perception of visual scé@es

In the neural substrate, the contextual influences on image

motion processing are represented by neurons whose re- J(X,t):i [(x,t)cog k(X = x)]dx, (1)
sponse to two moving stimuli within their receptive field L

depends on the relative direction of motion between the two )
stimuli [7-13, an effect known as motion-contrast sensitiv- yvherek represents a parameter of the transformation,land

ity. Specifically, the response is typically suppressed whefs the distance over which the convolution is performed. Ev-
the two stimuli move in the same direction, but the respons&'Y Pointx of the visual space is assigned a cosine function
is maximal when the two stimuli move in opposite direc- |(X,)cogk(X-x)]. The superposition of all the resulting co-

tions, with intermediate responses for intermediate relativéine functions yields a transformed intensity distribution
directions. J(X,1) that is also a cosine function. A snapshot of this trans-

The mechanism subserving motion-contrast sensitivity reformation is illustrated in Flg 1 for the Simple intenSity dis-
mains a mystery. The underlying computation requires spalfibution consisting of two points of light. Each of these
tial comparison of visual signals, presumably mediated bypoint stimuli is represented by a cosine function that moves
lateral and/or feedback Connectiomq_ Here we propose with the point. The spatial location of a given luminous point
an a|gorithm for motion-contrast Sensitivity that could p|au_iS lost under the postulated transformation, but information
sibly be implemented by lateral connections. Unlike earlieron relative motion is preserved. Superposition of the cosine
mechanistic descriptions of the effeft4—16, the model functions from all points in the visual scene represents the
developed here does not employ directionally selective mo;alient information about the motion in the dynamics of the
tion sensors as elementary units. interference pattern.

In Sec. Il, we introduce a basic filtering process and show Using standard trigonometric relations and introducing
analytically that this filter is sensitive to motion contrast in the spatial Fourier transfornf[1(x,t)] of the visual input
the image. Section Ill presents simulation results in support(X,t), Eq. (1) is rewritten as
of the analytical arguments. In Sec. IV, the algorithm is ex-
tended to two dimensions. We apply the motion-contrast- JXt) = [ALI(xD)]|lcogkX - ¢(t)], 2
sensitive filter to a variety of visual stimuli and compare its
responses with experimental data from both pigeon optic tecwhere

Il. MODEL
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1(x,1) 1(X51) 10:t) ReA[I(x,1)]= f (X — vat)cogkx)dx=a cogkut + a),
| _ L
Xa Xy A (6)
where
a=| f La(y)expliky)dy| = [ A1 (x,D]| (7)
L
X
and
L E I EV) ®

Re Alla(y)]’

X ,[ while ImF[1(x,t)] is given by the same expressi@) with
cos replaced by sin. The phase defined in @ymust there-
VARVARVARVAR VAR S
tan ¢, = tankv,t + a), (9

FIG. 1. Schematic of the wave transformation. Two points of
light of different intensity, represented by sharp peaks in the inten-
sity distributionl(x,t) in the visual space at, and x,, are trans-
formed into cosine functions with amplitudeéx,,t) and I(xy,t).
The superposition of the cosine functions leads to a new intensi
distribution J(X,t) =1(X5,t)cog k(X =Xz)]+1(Xp, t) cOF k(X —Xp)].

so we may choosé,=kuv,t+a. The transform2) becomes
J.(X,t) =a cogkX - kvt — a). (10

t3By symmetry, the same result applies for the transforrh,of
with a and « replaced by quantitieb and 8 defined from
I,(X=vpt) in analogy with Egs(7) and(8).

_ . Returning to the case where the moving intensity distri-
Fdlx0)]= fL | (x.hexplikx)dx ) butionsl, andl, are simultaneously present, linearity of the
convolution operation may be exploited to construct the total
and transformed intensity, to obtain
® ¢ ImFJ1(x,1)] @)
zarctan———————. -
[0/ ReA{1060)] J(X,t) = JL 1(x,t)cog k(X = x)]dx

Written in this way, the transforrd(X,t) is seen to describe
a traveling wave with an amplitude equal to the absolute
value of the Fourier transform dfx,t) atk. 11
More explicitly, let the visual scerléx,t) be composed of
the sum of intensity distribution$,(x,t) and I,(x,t) that
move rigidly with velocitiesv, andvy, respectively, i.e.,

=a codkX-kuv,t — a) + b cogkX - kvt — B).

As expected, this is a superposition of two waves traveling
with velocitiesv, and vy, providing the opportunity for in-
terference. Alternately, this result may be cast in the form

[(x,t) = I,(X = vat) + I,(X = vpt). 5 @,
We consider the two distributions individually, then super- J(X,1) = A(t)cogkX — ®(1)], (12)
pose. With the distribution,=1,(x-v,t) present alone, we
have where
|
k —_ t —_ 1/2
AW =| A x] :{<a—b>2+4ab cos?{ o vall, £ “H , 13

b sinNk(v, —v )t + 8- ] } (14
1l

(I)(t) = d)(t) = kvat+ a+ arctar{a+ b COik(Ub_ Ua)t"' B-
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The amplitude of the transformed intensi{X,t) is seen to tion. Full-wave rectification requires a threshold operation
oscillate with a frequency=k(v,—-v,)/4, while the factor  with respect to both negative and positive values and can be
cogkX-¢(t)] describes a carrier wave. Motion contrastimplemented by synaptic connectiofis7]. Note that this
within the visual field, as represented by the inghit, can  step of the algorithm can in principle be replaced by a half-
therefore be directly determined from the frequency of thewave rectification.
amplitude oscillation, which thereby provides a suitable (i) Next, we evaluate the amplitude modulation function,
measure of motion contrast. In the absence of contrast, i.e., f#efined as
the motion of the two intensity components is coherent and
v,=vy, the amplitudeA(t) is constant in time and the fre- M(t) = Eﬁ(t). (17)
guency is zero. dt

As an instructive and important example, we consider two

identical but independently moving test spots. Thus, the twd ©F coherent motiom(t) will be zero, whereas for incoher-
moving intensity distributions are functionally identical, €Nt Motion it executes an oscillation about zero with a fre-

1,(&)=1,(8), which implies thata=b and &=8. The trans- duency proportional to t_he .motion contrast of the visual
formed intensity distributiori2) then collapses to scene[note that the oscillation frequency of(t) differs
from the oscillation frequency di(t) by a factor 2, since the
Up— Uat) " cos(kx— (Dot la a) absolute value is taken in E¢L6)].
' (iii) Finally, determine the frequency of the oscillation of
(15) M(t) to high accuracy from the power spectrum of the tem-
poral Fourier transform dfi(t). The spatial resolution of the
In this simple case we see immediately that for coherentomputation is 0.1 deg, and the temporal resolution is
motion (v,=v}), the transformed intensity distribution is a 0.0125 s. The spatial frequendyof the transformation is
traveling wavewith constant amplitude that propagates with 0.5 cycles/deg. In the neural system, the paranietarre-
the velocityv, of the test spots. On the other hand, for inco-sponds to the spatial frequency of the motion-contrast-
herent(opposing motion (v,=-vy), the transformed inten- sensitive neuron. Tectal neurons are band-pass spatially
sity distribution,J(X,t)=2a cogkvt)codkX-a), is astand-  tuned with a maximum at about 0.5 cycles/d&§,19. Spa-
ing wavewith an oscillating amplitude. The frequenéyof  tial frequencies of neurons in monkey area MT range from
the amplitude oscillation is given byf=k(v,—v,) /4w  0.1to 8 cycles/de@20]. The second important parameter of
=kv,/ 2. the convolution is the length over which the convolution is
We may note already at this point that a peculiar situatiorPerformed. This parameter corresponds to the spatial extent
arises if eithera or b is equal to zero in Eq(13). Such a of the nonclassical receptive field of the motion-contrast-
situation is realized for identical background objects that ar&ensitive neuron. The total length of integration of the
at a distance that is an odd multiple of the half-wavelengtimotion-contrast-discrimination algorithm isL=80 deg,
m/k of the convolution. The amplituda(t) of J(X,t) is then ~ Which lies within the experimentally established range for
constant, and contrasting motion with+ vy, will not cause ~ Nonclassical receptive field sizgs).

J(X,t)=2a co{k

the amplitude ofJ(X,t) to oscillate. Accordingly, relative First, we apply the algorithm so defined to a visual scene
motion would be falsely perceived as coherent motion, crecOnsisting of two test spots of the same intengége Fig.
ating a visual illusion. 2(a)], each moving with a velocity of 8 deg/s through the

visual field of the detector. Far=[0,3.8ls, both stimuli are
moving with the same speed and in the same direction. The
lll. MOVING INTENSITY DISTRIBUTIONS IN 1D amplitude modulatioM(t) is zero. Att=3.8 s, the direction

In the proposed model for motion-contrast discrimination,0f motion of one of the test stimuli is reversed and the two
the amplitude of the wave describing the transformed intenStimuli are now moving against each other. As a result)
sity distribution J(X,t) oscillates with a frequency propor- ©scillates with a frequency of=8 Hz. The algorithm cor-
tional to the relative velocity of the moving constituents of Fectly determines the relative velocity to bev=2wf/k
the visual scene. The relative velocity is determined by mea= 16 deg/s. o _ _ _ _
suring the frequency of the amplitude oscillation. To imple-  S€cond, the algorithm is applied to a solid moving object

ment simulations to test the model, we apply a simpIeOf uniform intensity that moves in front of a random-dot
scheme. background[see Fig. &)]. This visual scene is chosen to

(i) Integrate the absolute value 3X,t) over a multiple correspond with experiments performed for neurons in the

of the transformation wavelength=2x/k to extract the 2vian optic tectunil2]. The object size is taken as 5 deg of
time-dependent amplitude the visual field. The random dots, of size 0.1 deg, have a

density of 1 dot/deg. The visual field of the detector spans a
visual angle of 80 deg. For=[0,3.8ls, object and back-
ground are moving in the same direction with an absolute
velocity of 8 deg/s. This is an example of whole-field mo-
wherem is an arbitrary integer. This quantity is independenttion. The amplitude modulation remains predominantly at
of the spatial variabl&, by construction. Taking the absolute zero, with some fluctuations attributable to edge effects. Dots
value of a real function corresponds to a full-wave rectifica-moving in and out of the visual field disturb the convolution

5 2mmk
I = |A(t)|f |cogkX ~ D(1)]|dX, (16)
0
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FIG. 2. Amplitude modulatiorM(t) as a function of time for
different stimuli in one dimension(a) Two test spots(black
squares move with absolute velocities of 8 deg/s through the vi-
sual field of the detector. Fdar[0,3.8s, both stimuli are moving
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standard deviation demonstrates that the algorithm leads to a
robust and accurate computation of the relative velocity for a
variety of complex stimuli.

IV. MOVING INTENSITY DISTRIBUTION IN 2D

The algorithm is readily extended to the physical case of
two dimensions. Let us assume to be definite that there are
two constituents of the intensity distribution in the visual
space whose rigid motion is determined by velocity vectors
v, and v,, respectively. Suppose first that the visual scene
projects onto an axis making an angfewith v,. Then the
velocity components parallel to the projection axis age
=|v4|cos y andv,,=|v,|cogy+ ), whered is the angle be-
tweenv,; andv,. In analogy with the one-dimensional case,
we convolve the projected, one-dimensional scene with a
cosine function. The frequency of the amplitude modulation
of the convolution integral will then be

k 1 k1
(1,8 = 5 los, =02} = 5 SViloos y= Ivcosy+ o).

(18

For y equal to zero and fov,| =|v,|, Eq. (18) reduces to

k 1
f(8) =5 -Ivll1 - cos, (19
272
which specifies the tuning curve for relative object motion
with respect to a projection axis parallel to the direction of
V.
To measure motion contrastdependentlyof an absolute
direction of motion(specified byy), one may repeat the mo-
tion analysis for two perpendicular projection axgsand

with the same speed and in the same direction. The amplitud@*(7/2), and define an averaged frequency of amplitude

modulationM(t) is zero. Att=3.8 s, the direction of motion of one

of the test stimuli is reversed, so that the two stimuli move against

each other. As a resull(t) starts to oscillate with a frequency of
f=8 Hz. With a spatial frequency &=0.5 cycles/deg, the algo-
rithm determines the relative velocity to ey =27f/k=16 deg/s,

the correct resultcb) A solid object 5 deg in length moves in front

modulation by

2

2
Vi — Vo~
477>|1 2|

(20)

2

of a random-dot background of density 1 dot/deg. For clarity ofFor |[v4|=|v,|, we obtain

presentation, every point of the 1D stimulus is represented by a
vertical line in the image icon. Both object and background are

moving with an absolute velocity of 8 deg/s. Fer[0, 3.8s, object

and background are moving in the same direction. The amplitud
modulation remains predominantly at zero; fluctuations are cause

by dots moving in and out of the visual field. &t 3.8 s, the motion

of the background is reversed, and the amplitude modulation sta\rl@]c Vi

to oscillate with a frequency of=8 Hz. Again, the algorithm de-
termines the relative velocity to b&v=2=f/k=16 deg/s, the cor-
rect result.

given by Eq.(1) in an unpredictable way. At=3.8 s, the

2k?

_ 2
op = @|vl| (1-cosd).

(21)

%quations(Zl) and (19) have the same dependence on the

angle § betweenv,; andv,. Therefore, when the magnitudes
and v, coincide, Eq.(21) is valid both for motion-
contrast detection with respect to an absolute direction of
motion and for motion-contrast detection independent of an
absolute direction of motion, apart from a constant scaling
factor.

Based on the extended model in the form developed

motion of the background is reversed and the amplitudeypbove, the frequency tuning curve for a solid object moving

modulation oscillates with a frequency b8 Hz. The algo-
rithm correctly determines the relative velocity to Bev

in front of a random-dot background has been determined
from computer simulations with the following specifications.

=2mf/k=16 deg/s. Repeating the analysis for different ran-The object size is chosen to bex% ded of the visual field.

dom background patterns, we obtained the restilt

The random-dot background spans the whole visual field of

=8.008+0.0681Hz for the average frequency. The smalthe detector(80% 80 ded). Again the dot size is 0.1
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FIG. 3. Comparison of the 2D model results with measured 2D tuning curves for motion-contrast-sensitive neurons. The visual stimulus
consists of a solid object of sizex55 ded and a random-dot background that spans the whole visual field of siz88@led. The density
of the dots is 1 dot/dég(insed. The random-dot background moves to the rigatge gray arroy The relative direction of motiord
between object and background is varied by changing the direction of motion of the object from -180 to +180 deg in steps of 45 deg. For
an object moving in front of a moving random-dot background, the theoretical curve, proportional to 4 tsotisl line), and the results of
the simulationgfilled black circle$ reproduce the experimental tuning measurements from primate cortical ar¢a0Mand avian tectum
[12,13. Both the model results and the measured tuning data are normalized to their respective maximum values.

% 0.1 ded while the dot density is 1 dot/dégThe relative tive velocity of non-Fourier or second-order-motion stimuli

direction of motions between object and background is var- [23], which also appear to be largely ineffective stimuli in

ied by changing the direction of motion of the object from human relative-motion processifig3—27.

—180 to +180 deg in steps of 45 deg. To detect the motion Even in early neural processing, local stimuli seem to be
contrast, the 2D visual scene is projected onto an axis parajnterpreted within the context in which the stimuli are em-

lel to the direction of the background motion and processeghedded[1]. Neuronal responses to stimuli within the classi-

with the motion-contrast-detection algorithm established in.g receptive field are modulated by stimuli from beyond its
Sec. lll. The resulting frequency values may be used to CONgoundaries, i.e., from the nonclassical receptive figH

struct a tuning curve that is normalized to the maximumpyqtion.contrast sensitive cells present striking evidence for

response attained. The analytical tning curves given by EQontextual influences from the nonclassical receptive field.

(21) and the response data representing experimental tuning g effects have been observed in the fiigthe fly
curves for avian tecturfil2,13 and cortical area MT10] are [8], and the cat, in the area MB], and the superior collicu-

normalizgd in the same fash_ion a’?d plotted in Fig. 3, 075 [10] of the monkey[11], in the avian optic tectum
gether with the normahzgd S|mul_at|on _results. The predlc-[lz,lq, and in the reting[28]. Most previous models of
tions from b.Oth anaIyS|s. and simulation show excellentmotion-contras:t sensitivity have assumed that the mechanism
agreement with the experimental data. underlying sensitivity to relative-motion direction involves

an inhibitory interaction between directionally selective

V. DISCUSSION motion-sensitive cell§14-149. Hovyever, it has been shown
that responses of neurons are independent of the absolute
We have proposed a wave-interference algorithm ofdirection of both surround and test stim[dil,12. This very

motion-contrast computation without motion sensors. The alfact casts doubt on the premise that directionally selective
gorithm classifies the visual scene into coherent and incohemotion sensors must be an integral part of a motion-contrast-
ent motion and determines the relative velocity of the twosensitive neural network. It has been shown previously that
moving parts of the visual scene. Most importantly, the 2Dsensitivity to speed contrast in the retina can be achieved
extension of the algorithm predicts the measured response teithout using directionally selective motion sensors as build-
motion contrast as a function of the relative angle of objecing blocks [28]. In this earlier work, sensitivity to speed
motion from avian tectum and primate area MT. Tuning tocontrast is explained by a model of retinal circuitry that in-
relative direction is usually found to be slightly broader thanvolves pooling over nonlinear interneurons. However, given
tuning to absolute direction of motid21,22. The algorithm  that this model only depends on speed, not on direction of
is related to Fourier-based approaches of motion computanotion, it does not account for relative-direction sensitivity
tion and, therefore, in general, it does not compute the relasf neurons in higher visual centers.
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> FIG. 4. Neural implementation. A layer of
spatial subunitglayer 1) gives input to a layer of
linear summing unitglayer 2 in a periodic way.
Each subunit of layer 1 responds to motion within
its receptive fieldgray ling. For a small moving
object, this gives rise to a wave of neural activity
(gray line that spans the neural population of
layer 2. When the object moves along the dimen-
sion of layer 1, the wave of activity will move
with the point along the neural population of
layer 2. Thus, the amplitude of the wave will os-
cillate in response to motion contrast. The popu-
lation response is then rectified, integrated, and
presented to an appropriate temporal filén to
read out the oscillation frequency.

Threshold

Here, we have demonstrated that motion-contrast sensitiintegral(1). Before the convolution, the spatial separation of
ity can be achieved without using directionally selective mo-visual objects prevents a comparison of their motion proper-
tion sensors as building blocks. In the model introduced herdjes and thereby frustrates the detection of motion contrast.
all spatial information is discarded. Instead, motion-contrasihe problem of spatial separation of the objects is overcome

sensitivity arises from global properties of the convolutionby transforming their local intensity pattern into a periodic
function that integrates intensity signals from the whole vi-

sual field. Contrasting motion gives rise to a time-dependent
modulation of the overall intensity distribution in the con-
MR A volved visual space. The resulting oscillation contains infor-
d=n d=(n+1/2) mation about the relative velocity of objects in the visual
AVAVAVAY, 90000000 scene. Relative-motion sensitivity originates from interfer-

‘ : ; ‘ ence of traveling waves that represent the moving objects of
the visual space. Patently, wave interference is not restricted
to cosine waves. Hence, the cosine function of the convolu-
tion integral (1) might be replaced by other functions, for
example a wave function that has been constructed from a
Gabor function.

The proposed model is thus a global theory of relative
motion; it does not compute local motion properties. As re-
quired, the model exhibits invariance with respect to whole-
field motion. However, it does not distinguish between dif-
ferent types of relative-motion stimuli, for example a
counterphase grating versus an object that moves in front of
a background, nor does it filter out temporal modulation of
‘ ‘ the overall intensity of the image.

15 2 25 The proposed algorithm can be implemented in a variety
Time [s] of plausible ways. For example, a set of spatial subunits
(layer 1 could be connected to linear summing unitsyer

F_IG. 5. Thought ex_periment. Two b_ars in the background arey) in a periodic patterrisee Fig. 4 As a consequence, each
moving together against an object in the foreground. Eor oo in layer 2 has a large, periodic spatial receptive field
=10,1.2s, the bars are at a distardéhat is an even multiple of the that resembles a cosine function. When an illuminated object

o s e s Ve hfough the vsual feld, it wil case an excialry
. - presenting . ga Pesponse(gray ling of the neural population of layer 1. The
a cosine wave that will interfere with the cosine wave representin

the foreground object. As a consequence, the response of the de’[%c(?l’lraI activity of layer 1 will produce a wave of neural ac-

tor will oscillate with a frequency that encodes the relative velocity ity spanning j[he. populatlo_n_ of neurons in Iaye.r .2 as a
between the background bars and the foreground objects. At result of_the perlqd|c connectivity. This wave of actlvm_/ will
=1.2 s, the background bars are moved at a distance that is an ofa0V€ With the stimulus through the population, thus imple-
multiple of the half wavelength of the convolution integral. In con- MeNting the convolution integral defined by Ed). Finally,
trast to the previous case, the cosine waves emerging from the baide population response of the layer-2 neurons is rectified,
will superpose to zero. Hence, the cosine wave representing thi@tegrated, and temporally filtered to read out the frequency
foreground object does not interfere with the background and th@®f the oscillation induced by motion contrast. This network
response of the detector will fail to oscillate even though motionarchitecture might require the participation of horizontal
contrast is present in the image. Thus, incoherent motion is falselgells, such as exist both in avian tect§29,30 and in mam-
perceived as coherent motion. malian corteX2], to connect distant neurons.

Amplitude modulation [arb. units]
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The periodicity inherent in the convolution opens the postematically vary the distance between the background bars
sibility of an experimental test of the proposed algorithm thatand determine whether the response of motion-contrast-
is suggested by the anomalous feature noted at the end sénsitive neurons is suppressed for certain distance choices
Sec. Il. In principle, the perception of moving visual objectswhen the background moves in opposition to a test &g
can be extinguished by convolving them with a periodicFig. 5).
function. For arbitrary intensity distributions, this is unlikely
to happen. However, an exceptional case can arise if two
identical bars are chosen for the background. If the back-
ground bars are at a distance that is an odd multiple of half We thank Ali Mahani for useful suggestions and Paul
the wavelength characterizing the convolution integral deStein, Anders Carlsson, Larry Snyder, Charles Anderson, and
fined by Eq.(1), the bars will eliminate each other. As a Tim Holy for comments on the manuscript. The work was
result, contrasting motion between an object and the backsupported by grants from the Whitehall Foundation, the Mc-
ground will be perceived as coherent motion. In an experiDonnell Center for Higher Brain Function, and NSF Grant
ment designed to observe this phenomenon, one could syblo. PHY-0140316.

ACKNOWLEDGMENTS

[1] T. D. Albright and G. R. Stoner, Annu. Rev. Neurosgb, 339 [16] W. Reichhardt, M. Egelhaaf, and A. Guo, Biol. Cyber®,
(2002. 327(1989.

[2] C. D. Gilbert, Physiol. Rev78, 467(1998. [17] K. Graubard and D. K. Hartline, Scien@87, 535 (1987.

[3] K. Nakayama and J. M. Loomis, Percepti@n(1), 63(1974. (18] O. Hardy and D. J. Gerschenfeld, Brain R&99, 452(1980).

[4] T D. Albright, in \ﬁ_sual Motion and Its Role in the Stabiliza- [19] V. Porciatti, R. Alesci, and P. Bagnoli, Visual Neuros2j.137
tion of Gaze(Elsevier, Amsterdam, 1993

T . (1989.
[5] ‘liieﬁlcl)?gné 4Fb7Ml'gém’ and E. McGuinness, Annu. Rev. [20] L. P. O'Keefe and J. A. Movshon, Visual Neurosdi5, 305
.8, (1985. (1998.

[6] K. Nakayama, Vision Res25(5), 625(1985.

[7] U. Grusser-Cornels, O. Grusser, and T. Bullock, Sciehé [21] J. R. Cavanaugh, W. Bair, and J. A. Movshon, J. Neurophysiol.

820 (1963. 88, 2547(2002. .
[8] R. Virsik and W. Reichhardt, Naturwissenschaftén, 132  [22] R. T. Born, J. Neurophysiol84, 2658(2000.
(1974, [23] C. Chubb and G. Sperling, J. Opt. Soc. Am5A1986(1988.
[9] P. Hammond and D. M. MacKay, J. Physi¢London) 319, [24] P. Cavanagh and G. Mather, Spatial Vi5.103(1989.
431(198)). [25] B. A. Dosher, M. S. Landy, and G. Sperling, Vision R&9,
[10] J. M. Allman, F. Miezin, and E. McGuiness, Perceptits, 1789(1989.
105 (1985. [26] M. S. Landy, B. A. Dosher, G. Sperling, and M. E. Perkins,
[11] R. M. Davidson and D. B. Bender, J. Neurophysié&(5), Vision Res. 31, 859 (199)).
1115(1991). [27] S. Nishida, M. Edwards, and T. Sato, Vision Re¥/, 199
[12] B. J. Frost and K. Nakayama, Scien2@0, 744 (1983. (1997).
[13] H. J. Sun, J. Zhao, T. Southall, and B. Xu, Visual Neuro48i. [28] B. P. Olveczky, S. A. Baccus, and M. Meister, Nature
(2), 133(2002. (London 423 401(2003.
[14] O. J. Gruesser, Vision Re8, 103(1971). [29] O. Hardy, N. Leresche, and D. Jassik-Gerschenfeld, J. Comp.
[15] T. Poggio, W. Reichhardt, and K. Hausen, Naturwissen- Neurol. 233 390(1985.
schaften68, 443(1981. [30] H. Luksch and S. Golz, J. Chem. Neuroar2, 185(2003.

031907-7



