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The detection of relative motion, i.e., motion contrast, has been reported for motion-sensitive neurons in
several vertebrate systems, yet the mechanism underlying motion-contrast sensitivity remains unknown. An
algorithm for computing motion contrast directly from the moving intensity distribution is proposed. In this
algorithm, the time-dependent intensity distribution of the visual space is convolved with a periodic function.
For coherent motion, the resulting convolution integral reduces to a traveling wave of fixed amplitude, while
incoherent motion causes the amplitude to oscillate. The frequency of the amplitude oscillation provides a
measure of motion contrast. The algorithm is successful in reproducing tuning curves derived from measure-
ments of motion-contrast sensitivity in avian tectum and primate middle temporal area.
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I. INTRODUCTION

To function successfully in its environment, an animal
requires the ability to distinguish a salient moving object
from its background in the visual scene. In particular, it must
be able to eliminate irrelevant whole field motion due to
body, head, and eye movements. Self-evidently, motion-
contrast detection, and its analog extension to motion-
contrast estimation, are computational tasks of fundamental
importance to visual processing in vertebrates.

A large body of experimental evidence has established
that visual processing of local image features is shaped by
the context within which local features are presented[1–3].
Contextual influences on visual processing extend to higher-
order image properties, such as image motion[4,5], which
plays an essential role in the perception of visual scenes[6].
In the neural substrate, the contextual influences on image
motion processing are represented by neurons whose re-
sponse to two moving stimuli within their receptive field
depends on the relative direction of motion between the two
stimuli [7–13], an effect known as motion-contrast sensitiv-
ity. Specifically, the response is typically suppressed when
the two stimuli move in the same direction, but the response
is maximal when the two stimuli move in opposite direc-
tions, with intermediate responses for intermediate relative
directions.

The mechanism subserving motion-contrast sensitivity re-
mains a mystery. The underlying computation requires spa-
tial comparison of visual signals, presumably mediated by
lateral and/or feedback connections[1,4]. Here we propose
an algorithm for motion-contrast sensitivity that could plau-
sibly be implemented by lateral connections. Unlike earlier
mechanistic descriptions of the effect[14–16], the model
developed here does not employ directionally selective mo-
tion sensors as elementary units.

In Sec. II, we introduce a basic filtering process and show
analytically that this filter is sensitive to motion contrast in
the image. Section III presents simulation results in support
of the analytical arguments. In Sec. IV, the algorithm is ex-
tended to two dimensions. We apply the motion-contrast-
sensitive filter to a variety of visual stimuli and compare its
responses with experimental data from both pigeon optic tec-

tum and middle temporal area of the monkey(area MT). In
Sec. V we discuss the model against the background of ex-
isting models of motion-contrast sensitivity and experimental
data. We further suggest an implementation of the model in
terms of a neural network that might be realized biologically.

II. MODEL

Our model employs a basic filtering process to sense con-
trasting motion in visual scenes and to determine the relative
velocity of moving objects. The time-dependent, one-
dimensional visual inputIsx,td along thex dimension is con-
volved with a cosine function, leading to a transformed in-
tensity distribution

JsX,td =E
L

Isx,tdcosfksX − xdgdx, s1d

wherek represents a parameter of the transformation, andL
is the distance over which the convolution is performed. Ev-
ery pointx of the visual space is assigned a cosine function
Isx,tdcosfksX−xdg. The superposition of all the resulting co-
sine functions yields a transformed intensity distribution
JsX,td that is also a cosine function. A snapshot of this trans-
formation is illustrated in Fig. 1 for the simple intensity dis-
tribution consisting of two points of light. Each of these
point stimuli is represented by a cosine function that moves
with the point. The spatial location of a given luminous point
is lost under the postulated transformation, but information
on relative motion is preserved. Superposition of the cosine
functions from all points in the visual scene represents the
salient information about the motion in the dynamics of the
interference pattern.

Using standard trigonometric relations and introducing
the spatial Fourier transformFkfIsx,tdg of the visual input
Isx,td, Eq. (1) is rewritten as

JsX,td = uFkfIsx,tdgucosfkX− fstdg, s2d

where
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FkfIsx,tdg =E
L

Isx,tdexpsikxddx s3d

and

fstd = arctan
ImFkfIsx,tdg
ReFkfIsx,tdg

. s4d

Written in this way, the transformJsX,td is seen to describe
a traveling wave with an amplitude equal to the absolute
value of the Fourier transform ofIsx,td at k.

More explicitly, let the visual sceneIsx,td be composed of
the sum of intensity distributionsIasx,td and Ibsx,td that
move rigidly with velocitiesva andvb, respectively, i.e.,

Isx,td = Iasx − vatd + Ibsx − vbtd. s5d

We consider the two distributions individually, then super-
pose. With the distributionIa= Iasx−vatd present alone, we
have

ReFkfIsx,tdg =E
L

Iasx − vatdcosskxddx= a cosskvat + ad,

s6d

where

a = uE
L

Iasydexpsikyddyu = uFkfIsx,tdgu s7d

and

a = arctan
Im FkfIasydg
ReFkfIasydg

, s8d

while ImFkfIsx,tdg is given by the same expression(6) with
cos replaced by sin. The phase defined in Eq.(4) must there-
fore satisfy

tan fa = tanskvat + ad, s9d

so we may choosefa=kvat+a. The transform(2) becomes

JasX,td = a cosskX− kvat − ad. s10d

By symmetry, the same result applies for the transform ofIb,
with a and a replaced by quantitiesb and b defined from
Ibsx−vbtd in analogy with Eqs.(7) and (8).

Returning to the case where the moving intensity distri-
butionsIa and Ib are simultaneously present, linearity of the
convolution operation may be exploited to construct the total
transformed intensity, to obtain

JsX,td =E
L

Isx,tdcosfksX − xdgdx

= a cosskX− kvat − ad + b cosskX− kvbt − bd.

s11d

As expected, this is a superposition of two waves traveling
with velocitiesva and vb, providing the opportunity for in-
terference. Alternately, this result may be cast in the form
(2),

JsX,td = AstdcosfkX− Fstdg, s12d

where

Astd = uFkfIsx,tdgu = Hsa − bd2 + 4ab cos2Fksvb − vadt
2

+
b − a

2
GJ1/2

, s13d

Fstd = fstd = kvat + a + arctanF b sinfksvb − vadt + b − ag
a + b cosfksvb − vadt + b − agG . s14d

FIG. 1. Schematic of the wave transformation. Two points of
light of different intensity, represented by sharp peaks in the inten-
sity distribution Isx,td in the visual space atxa and xb, are trans-
formed into cosine functions with amplitudesIsxa,td and Isxb,td.
The superposition of the cosine functions leads to a new intensity
distributionJsX,td= Isxa,tdcosfksX−xadg+ Isxb,tdcosfksX−xbdg.
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The amplitude of the transformed intensityJsX,td is seen to
oscillate with a frequencyf =ksvb−vad /4p, while the factor
cosfkX−fstdg describes a carrier wave. Motion contrast
within the visual field, as represented by the input(5), can
therefore be directly determined from the frequency of the
amplitude oscillation, which thereby provides a suitable
measure of motion contrast. In the absence of contrast, i.e., if
the motion of the two intensity components is coherent and
va=vb, the amplitudeAstd is constant in time and the fre-
quency is zero.

As an instructive and important example, we consider two
identical but independently moving test spots. Thus, the two
moving intensity distributions are functionally identical,
Iasjd; Ibsjd, which implies thata=b and a=b. The trans-
formed intensity distribution(2) then collapses to

JsX,td = 2a cosSk
vb − va

2
tD 3 cosSkX− k

vb + va

2
t − aD .

s15d

In this simple case we see immediately that for coherent
motion (va=vb), the transformed intensity distribution is a
traveling wavewith constant amplitude that propagates with
the velocityva of the test spots. On the other hand, for inco-
herent(opposing) motion sva=−vbd, the transformed inten-
sity distribution,JsX,td=2a cosskvatdcosskX−ad, is astand-
ing wavewith an oscillating amplitude. The frequencyf of
the amplitude oscillation is given byf =ksvb−vad /4p
=kva/2p.

We may note already at this point that a peculiar situation
arises if eithera or b is equal to zero in Eq.(13). Such a
situation is realized for identical background objects that are
at a distance that is an odd multiple of the half-wavelength
p /k of the convolution. The amplitudeAstd of JsX,td is then
constant, and contrasting motion withvaÞvb will not cause
the amplitude ofJsX,td to oscillate. Accordingly, relative
motion would be falsely perceived as coherent motion, cre-
ating a visual illusion.

III. MOVING INTENSITY DISTRIBUTIONS IN 1D

In the proposed model for motion-contrast discrimination,
the amplitude of the wave describing the transformed inten-
sity distribution JsX,td oscillates with a frequency propor-
tional to the relative velocity of the moving constituents of
the visual scene. The relative velocity is determined by mea-
suring the frequency of the amplitude oscillation. To imple-
ment simulations to test the model, we apply a simple
scheme.

(i) Integrate the absolute value ofJsX,td over a multiple
of the transformation wavelengthl=2p /k to extract the
time-dependent amplitude

J̃std = uAstduE
0

2pm/k

ucosfkX− FstdgudX, s16d

wherem is an arbitrary integer. This quantity is independent
of the spatial variableX, by construction. Taking the absolute
value of a real function corresponds to a full-wave rectifica-

tion. Full-wave rectification requires a threshold operation
with respect to both negative and positive values and can be
implemented by synaptic connectionsf17g. Note that this
step of the algorithm can in principle be replaced by a half-
wave rectification.

(ii ) Next, we evaluate the amplitude modulation function,
defined as

Mstd =
d

dt
J̃std. s17d

For coherent motionMstd will be zero, whereas for incoher-
ent motion it executes an oscillation about zero with a fre-
quency proportional to the motion contrast of the visual
scenefnote that the oscillation frequency ofMstd differs
from the oscillation frequency ofAstd by a factor 2, since the
absolute value is taken in Eq.s16dg.

(iii ) Finally, determine the frequency of the oscillation of
Mstd to high accuracy from the power spectrum of the tem-
poral Fourier transform ofMstd. The spatial resolution of the
computation is 0.1 deg, and the temporal resolution is
0.0125 s. The spatial frequencyk of the transformation is
0.5 cycles/deg. In the neural system, the parameterk corre-
sponds to the spatial frequency of the motion-contrast-
sensitive neuron. Tectal neurons are band-pass spatially
tuned with a maximum at about 0.5 cycles/deg[18,19]. Spa-
tial frequencies of neurons in monkey area MT range from
0.1 to 8 cycles/deg[20]. The second important parameter of
the convolution is the lengthL over which the convolution is
performed. This parameter corresponds to the spatial extent
of the nonclassical receptive field of the motion-contrast-
sensitive neuron. The total length of integration of the
motion-contrast-discrimination algorithm isL=80 deg,
which lies within the experimentally established range for
nonclassical receptive field sizes[5].

First, we apply the algorithm so defined to a visual scene
consisting of two test spots of the same intensity[see Fig.
2(a)], each moving with a velocity of 8 deg/s through the
visual field of the detector. Fort=f0,3.8gs, both stimuli are
moving with the same speed and in the same direction. The
amplitude modulationMstd is zero. Att=3.8 s, the direction
of motion of one of the test stimuli is reversed and the two
stimuli are now moving against each other. As a result,Mstd
oscillates with a frequency off =8 Hz. The algorithm cor-
rectly determines the relative velocity to benv=2pf /k
=16 deg/s.

Second, the algorithm is applied to a solid moving object
of uniform intensity that moves in front of a random-dot
background[see Fig. 2(b)]. This visual scene is chosen to
correspond with experiments performed for neurons in the
avian optic tectum[12]. The object size is taken as 5 deg of
the visual field. The random dots, of size 0.1 deg, have a
density of 1 dot/deg. The visual field of the detector spans a
visual angle of 80 deg. Fort=f0,3.8gs, object and back-
ground are moving in the same direction with an absolute
velocity of 8 deg/s. This is an example of whole-field mo-
tion. The amplitude modulation remains predominantly at
zero, with some fluctuations attributable to edge effects. Dots
moving in and out of the visual field disturb the convolution
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given by Eq.(1) in an unpredictable way. Att=3.8 s, the
motion of the background is reversed and the amplitude
modulation oscillates with a frequency off =8 Hz. The algo-
rithm correctly determines the relative velocity to benv
=2pf /k=16 deg/s. Repeating the analysis for different ran-

dom background patterns, we obtained the resultf̄
=8.008±0.0681Hz for the average frequency. The small

standard deviation demonstrates that the algorithm leads to a
robust and accurate computation of the relative velocity for a
variety of complex stimuli.

IV. MOVING INTENSITY DISTRIBUTION IN 2D

The algorithm is readily extended to the physical case of
two dimensions. Let us assume to be definite that there are
two constituents of the intensity distribution in the visual
space whose rigid motion is determined by velocity vectors
v1 and v2, respectively. Suppose first that the visual scene
projects onto an axis making an angleg with v1. Then the
velocity components parallel to the projection axis arev1g

= uv1ucosg andv2g= uv2ucossg+dd, whered is the angle be-
tweenv1 andv2. In analogy with the one-dimensional case,
we convolve the projected, one-dimensional scene with a
cosine function. The frequency of the amplitude modulation
of the convolution integral will then be

fsg,dd =
k

2p

1

2
uv1g − v2gu =

k

2p

1

2
uuv1ucosg − uv2ucossg + ddu.

s18d

For g equal to zero and foruv1u = uv2u, Eq. (18) reduces to

fsdd =
k

2p

1

2
uv1uu1 − cosdu, s19d

which specifies the tuning curve for relative object motion
with respect to a projection axis parallel to the direction of
v1.

To measure motion contrastindependentlyof an absolute
direction of motion(specified byg), one may repeat the mo-
tion analysis for two perpendicular projection axes,g and
g+sp /2d, and define an averaged frequency of amplitude
modulation by

f2Dsdd = fsg,dd2 + fSg +
p

2
,dD2

= S k

4p
D2

uv1 − v2u2.

s20d

For uv1u = uv2u, we obtain

f2D =
2k2

s4pd2uv1u2s1 − cosdd. s21d

Equations(21) and (19) have the same dependence on the
angled betweenv1 andv2. Therefore, when the magnitudes
of v1 and v2 coincide, Eq.(21) is valid both for motion-
contrast detection with respect to an absolute direction of
motion and for motion-contrast detection independent of an
absolute direction of motion, apart from a constant scaling
factor.

Based on the extended model in the form developed
above, the frequency tuning curve for a solid object moving
in front of a random-dot background has been determined
from computer simulations with the following specifications.
The object size is chosen to be 535 deg2 of the visual field.
The random-dot background spans the whole visual field of
the detector s80380 deg2d. Again the dot size is 0.1

FIG. 2. Amplitude modulationMstd as a function of time for
different stimuli in one dimension.(a) Two test spots(black
squares) move with absolute velocities of 8 deg/s through the vi-
sual field of the detector. Fort=f0,3.8gs, both stimuli are moving
with the same speed and in the same direction. The amplitude
modulationMstd is zero. Att=3.8 s, the direction of motion of one
of the test stimuli is reversed, so that the two stimuli move against
each other. As a result,Mstd starts to oscillate with a frequency of
f =8 Hz. With a spatial frequency ofk=0.5 cycles/deg, the algo-
rithm determines the relative velocity to benv=2pf /k=16 deg/s,
the correct result.(b) A solid object 5 deg in length moves in front
of a random-dot background of density 1 dot/deg. For clarity of
presentation, every point of the 1D stimulus is represented by a
vertical line in the image icon. Both object and background are
moving with an absolute velocity of 8 deg/s. Fort=f0,3.8gs, object
and background are moving in the same direction. The amplitude
modulation remains predominantly at zero; fluctuations are caused
by dots moving in and out of the visual field. Att=3.8 s, the motion
of the background is reversed, and the amplitude modulation starts
to oscillate with a frequency off =8 Hz. Again, the algorithm de-
termines the relative velocity to benv=2pf /k=16 deg/s, the cor-
rect result.
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30.1 deg2 while the dot density is 1 dot/deg2. The relative
direction of motiond between object and background is var-
ied by changing the direction of motion of the object from
−180 to +180 deg in steps of 45 deg. To detect the motion
contrast, the 2D visual scene is projected onto an axis paral-
lel to the direction of the background motion and processed
with the motion-contrast-detection algorithm established in
Sec. III. The resulting frequency values may be used to con-
struct a tuning curve that is normalized to the maximum
response attained. The analytical tuning curves given by Eq.
(21) and the response data representing experimental tuning
curves for avian tectum[12,13] and cortical area MT[10] are
normalized in the same fashion and plotted in Fig. 3, to-
gether with the normalized simulation results. The predic-
tions from both analysis and simulation show excellent
agreement with the experimental data.

V. DISCUSSION

We have proposed a wave-interference algorithm of
motion-contrast computation without motion sensors. The al-
gorithm classifies the visual scene into coherent and incoher-
ent motion and determines the relative velocity of the two
moving parts of the visual scene. Most importantly, the 2D
extension of the algorithm predicts the measured response to
motion contrast as a function of the relative angle of object
motion from avian tectum and primate area MT. Tuning to
relative direction is usually found to be slightly broader than
tuning to absolute direction of motion[21,22]. The algorithm
is related to Fourier-based approaches of motion computa-
tion and, therefore, in general, it does not compute the rela-

tive velocity of non-Fourier or second-order-motion stimuli
[23], which also appear to be largely ineffective stimuli in
human relative-motion processing[23–27].

Even in early neural processing, local stimuli seem to be
interpreted within the context in which the stimuli are em-
bedded[1]. Neuronal responses to stimuli within the classi-
cal receptive field are modulated by stimuli from beyond its
boundaries, i.e., from the nonclassical receptive field[5].
Motion-contrast sensitive cells present striking evidence for
contextual influences from the nonclassical receptive field.
Surround effects have been observed in the frog[7], the fly
[8], and the cat, in the area MT[9], and the superior collicu-
lus [10] of the monkey [11], in the avian optic tectum
[12,13], and in the retina[28]. Most previous models of
motion-contrast sensitivity have assumed that the mechanism
underlying sensitivity to relative-motion direction involves
an inhibitory interaction between directionally selective
motion-sensitive cells[14–16]. However, it has been shown
that responses of neurons are independent of the absolute
direction of both surround and test stimuli[11,12]. This very
fact casts doubt on the premise that directionally selective
motion sensors must be an integral part of a motion-contrast-
sensitive neural network. It has been shown previously that
sensitivity to speed contrast in the retina can be achieved
without using directionally selective motion sensors as build-
ing blocks [28]. In this earlier work, sensitivity to speed
contrast is explained by a model of retinal circuitry that in-
volves pooling over nonlinear interneurons. However, given
that this model only depends on speed, not on direction of
motion, it does not account for relative-direction sensitivity
of neurons in higher visual centers.

FIG. 3. Comparison of the 2D model results with measured 2D tuning curves for motion-contrast-sensitive neurons. The visual stimulus
consists of a solid object of size 535 deg2 and a random-dot background that spans the whole visual field of size 80380 deg2. The density
of the dots is 1 dot/deg2 (inset). The random-dot background moves to the right(large gray arrow). The relative direction of motiond
between object and background is varied by changing the direction of motion of the object from −180 to +180 deg in steps of 45 deg. For
an object moving in front of a moving random-dot background, the theoretical curve, proportional to 1−cosd (solid line), and the results of
the simulations(filled black circles) reproduce the experimental tuning measurements from primate cortical area MT[10] and avian tectum
[12,13]. Both the model results and the measured tuning data are normalized to their respective maximum values.
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Here, we have demonstrated that motion-contrast sensitiv-
ity can be achieved without using directionally selective mo-
tion sensors as building blocks. In the model introduced here,
all spatial information is discarded. Instead, motion-contrast
sensitivity arises from global properties of the convolution

integral(1). Before the convolution, the spatial separation of
visual objects prevents a comparison of their motion proper-
ties and thereby frustrates the detection of motion contrast.
The problem of spatial separation of the objects is overcome
by transforming their local intensity pattern into a periodic
function that integrates intensity signals from the whole vi-
sual field. Contrasting motion gives rise to a time-dependent
modulation of the overall intensity distribution in the con-
volved visual space. The resulting oscillation contains infor-
mation about the relative velocity of objects in the visual
scene. Relative-motion sensitivity originates from interfer-
ence of traveling waves that represent the moving objects of
the visual space. Patently, wave interference is not restricted
to cosine waves. Hence, the cosine function of the convolu-
tion integral (1) might be replaced by other functions, for
example a wave function that has been constructed from a
Gabor function.

The proposed model is thus a global theory of relative
motion; it does not compute local motion properties. As re-
quired, the model exhibits invariance with respect to whole-
field motion. However, it does not distinguish between dif-
ferent types of relative-motion stimuli, for example a
counterphase grating versus an object that moves in front of
a background, nor does it filter out temporal modulation of
the overall intensity of the image.

The proposed algorithm can be implemented in a variety
of plausible ways. For example, a set of spatial subunits
(layer 1) could be connected to linear summing units(layer
2) in a periodic pattern(see Fig. 4). As a consequence, each
neuron in layer 2 has a large, periodic spatial receptive field
that resembles a cosine function. When an illuminated object
moves through the visual field, it will cause an excitatory
response(gray line) of the neural population of layer 1. The
neural activity of layer 1 will produce a wave of neural ac-
tivity spanning the population of neurons in layer 2 as a
result of the periodic connectivity. This wave of activity will
move with the stimulus through the population, thus imple-
menting the convolution integral defined by Eq.(1). Finally,
the population response of the layer-2 neurons is rectified,
integrated, and temporally filtered to read out the frequency
of the oscillation induced by motion contrast. This network
architecture might require the participation of horizontal
cells, such as exist both in avian tectum[29,30] and in mam-
malian cortex[2], to connect distant neurons.

FIG. 4. Neural implementation. A layer of
spatial subunits(layer 1) gives input to a layer of
linear summing units(layer 2) in a periodic way.
Each subunit of layer 1 responds to motion within
its receptive field(gray line). For a small moving
object, this gives rise to a wave of neural activity
(gray line) that spans the neural population of
layer 2. When the object moves along the dimen-
sion of layer 1, the wave of activity will move
with the point along the neural population of
layer 2. Thus, the amplitude of the wave will os-
cillate in response to motion contrast. The popu-
lation response is then rectified, integrated, and
presented to an appropriate temporal filterhstd to
read out the oscillation frequency.

FIG. 5. Thought experiment. Two bars in the background are
moving together against an object in the foreground. Fort
=f0,1.2gs, the bars are at a distanced that is an even multiple of the
wavelength of the convolution integral. In this case, the superposi-
tion of the cosine functions representing the two bars leads again to
a cosine wave that will interfere with the cosine wave representing
the foreground object. As a consequence, the response of the detec-
tor will oscillate with a frequency that encodes the relative velocity
between the background bars and the foreground objects. Att
=1.2 s, the background bars are moved at a distance that is an odd
multiple of the half wavelength of the convolution integral. In con-
trast to the previous case, the cosine waves emerging from the bars
will superpose to zero. Hence, the cosine wave representing the
foreground object does not interfere with the background and the
response of the detector will fail to oscillate even though motion
contrast is present in the image. Thus, incoherent motion is falsely
perceived as coherent motion.
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The periodicity inherent in the convolution opens the pos-
sibility of an experimental test of the proposed algorithm that
is suggested by the anomalous feature noted at the end of
Sec. II. In principle, the perception of moving visual objects
can be extinguished by convolving them with a periodic
function. For arbitrary intensity distributions, this is unlikely
to happen. However, an exceptional case can arise if two
identical bars are chosen for the background. If the back-
ground bars are at a distance that is an odd multiple of half
the wavelength characterizing the convolution integral de-
fined by Eq.(1), the bars will eliminate each other. As a
result, contrasting motion between an object and the back-
ground will be perceived as coherent motion. In an experi-
ment designed to observe this phenomenon, one could sys-

tematically vary the distance between the background bars
and determine whether the response of motion-contrast-
sensitive neurons is suppressed for certain distance choices
when the background moves in opposition to a test spot(see
Fig. 5).
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